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Abstract A particle filter method is presented for the discrete-time filtering problem with
nonlinear Itô stochastic ordinary differential equations (SODE) with additive noise supposed
to be analytically integrable as a function of the underlying vector-Wiener process and time.
The Diffusion Kernel Filter is arrived at by a parametrization of small noise-driven state fluc-
tuations within branches of prediction and a local use of this parametrization in the Bootstrap
Filter. The method applies for small noise and short prediction steps. With explicit numer-
ical integrators, the operations count in the Diffusion Kernel Filter is shown to be smaller
than in the Bootstrap Filter whenever the initial state for the prediction step has sufficiently
few moments. The established parametrization is a dual-formula for the analysis of sensi-
tivity to gaussian-initial perturbations and the analysis of sensitivity to noise-perturbations,
in deterministic models, showing in particular how the stability of a deterministic dynamics
is modeled by noise on short times and how the diffusion matrix of an SODE should be
modeled (i.e. defined) for a gaussian-initial deterministic problem to be cast into an SODE
problem. From it, a novel definition of prediction may be proposed that coincides with the
deterministic path within the branch of prediction whose information entropy at the end of
the prediction step is closest to the average information entropy over all branches. Tests
are made with the Lorenz-63 equations, showing good results both for the filter and the
definition of prediction.

Keywords Data assimilation · Filtering · Particle filters · Diffusion kernel filter ·
Sensitivity analysis · Prediction

1 Introduction

Due to the lack of precise information in some fronts (e.g. physical processes, initial state or
parameters) and the loss of information in other fronts (e.g. any form of dimension reduction
through modeling and numerical handling), prediction of the future is a stochastic initial
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value problem by nature. In some contexts, Data Assimilation aims at turning feasible the
sensitive prediction problems (e.g. [14]), at least for short times, by way of providing the
initial states and parameters with probability measures and extracting estimates from these
[1, 10, 12].

Considered is the nonlinear Itô1 SODE (stochastic ordinary differential equation) prob-
lem with additive noise

dx = f (x)dt + g(t,w)dw, t ∈ [t0, tN], (1.1)

x(t0) = x0, independent of w(t − t0) for all t ≥ t0, (1.2)

and the stochastic process (data function)

yt = h(x(t), t) + zt , (1.3)

where f : R
n → R

n (drift function) and g : R
n → M(R, n,p) (diffusion matrix) are contin-

uously differentiable and slowly increasing functions; w : [0,+∞)× C0([0,+∞),R
p) −→

R
p , w = w(s), is a standard vector-Wiener process with independent components, wherein

C0([0,+∞),R
p) is the space of continuous functions from [0,+∞) to R

p whose initial
value is 0; h : R

n × [t0, tN] → R
m (observation function) is a continuous function; zt is a

given noise process onto R
m, independent of x0 and w(t − t0) for all t ≥ t0 [11, 13]. De-

termining the sequence of random states �(x0; tk) | (yt1 = y1, . . . , ytk = yk), k = 1, . . . ,N,
where �(x0; t) is the solution of problem (1.1)–(1.2) and yk ∈ R

m is an outcome of yt drawn
at time tk , is an instance of Discrete-Time Data Assimilation problem: the Discrete-Time
Filtering problem with (1.1). Particle Filters are sample-based numerical methods for the
discrete-time filtering problem [4, 5]. These methods suffer from two major shortcomings,
reflecting nonlinearity: large operations count and troubles defining prediction2. This work
introduces a particle filter method for the discrete-time filtering problem with (1.1), whose
noise term is supposed to be analytically integrable as a function of the underlying vector-
Wiener process and time to keep from sampling its history, along with a suitable definition
of prediction. The method, to be called Diffusion Kernel Filter, applies for small noise and
short prediction steps. It is arrived at by a parametrization of small noise-driven state fluctu-
ations within “branches of prediction” and a local use of it in the Bootstrap Filter (namely,
sampling the end-points of branches of prediction). The established formula reads as the
stochastic integral of a diffusion kernel or the accumulated system noise mapped through
the deterministic propagator of initial perturbations. It is derived by a reformulation of prob-
lem (1.1)–(1.2) into a Liouville SPDE (stochastic partial differential equation) problem, use
of Duhamel’s principle in weak form, splitting of a term with a projection operator and its
complement, restriction of the resulting problem to an open nonlinear SODE problem for
the flow of a branch of prediction, and closure of the latter problem. This was inspired from
[2, 3], where a similar technique is used to tackle the dimension reduction problem for the
random dynamics of a non-gaussian-initial nonlinear ODE (ordinary differential equation).

In Sect. 2, the Bootstrap Filter is described; in Sect. 3, the Diffusion Kernel Filter is de-
rived; in Sect. 4, results obtained with the Lorenz-63 equations are presented. Throughout
the text, Fréchet and weak derivatives are handled formally and dw/dt treated like a distrib-
ution (i.e. generalized function); the symbol := stands for a definition and D for a derivative
with respect to the underlying independent state variable.

1Some colored noise processes can be treated in this framework (cf. [8], Sect. 4.8).
2The average estimate is a bad choice when the phase space is an embedded manifold (e.g. a set of shock or
thermodynamical profiles).
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2 The Bootstrap Filter

Definition 2.1 Let xk,λ be the filtered state at time tk , k = 1, . . . ,N, that is,

xk,λ := �(x0; tk) | (yt1,λ = y1, . . . , ytk,λ = yk),

where �(x0; t) is the solution of problem (1.1)–(1.2).

Consider the nonlinear Itô SODE problem with multiplicative3 noise

dx = f (x)dt + g(x)dw, t ∈ [tk, tk+1], (2.1)

x(tk) = xk,λ, (2.2)

and let �(xk,λ; t) be its solution.
From

�(xk,λ; t) = �(�(x0; tk) | (yt1,λ = y1, . . . , ytk,λ = yk); t)
= �(x0; t) | (yt1,λ = y1, . . . , ytk,λ = yk), t ∈ [tk, tk+1],

one obtains

xk+1,λ = �(xk,λ; tk+1) | (ytk+1,λ = yk+1).

Thus

xk+1,λ ∼ p(x|yk+1) = p(yk+1|x)p(x)

p(yk+1)
, (2.3)

for (�(xk,λ; tk+1), ytk+1,λ) ∼ p(x, y).

Algorithm 2.1 (Bootstrap Filter [6]) Let xk,i , i = 1, . . . , Ik , be distinct samples of xk,λ; let
Jk,i be the number of times sample xk,i is repeated,

∑Ik
i=1 Jk,i = I .

Consider the nonlinear Itô SODE problem

dx = f (x)dt + g(x)dw, t ∈ [tk, tk+1], (2.4)

x(tk) = xk,i ∈ R
n, (2.5)

and let �(xk,i; t) be its solution.
Steps:

(1) For each i = 1, . . . , Ik , solve problem (2.4)–(2.5) numerically for Jk,i paths of �(xk,i; t),
up to time t = tk+1, so as to sample from p(x). Let x(i,j), i = 1, . . . , Ik , j = 1, . . . , Jk,i ,
be the samples thus obtained.

(2) Draw I samples from the discrete random variable (i, j) with mass function

pk+1,(i,j) := p(yk+1|x(i,j))
/∑

ı,j

p(yk+1|x(ı,j)).

Let (i ′, j ′) be these samples without repetition and J(i′,j ′) the number of times they are
repeated. Then {x(i′,j ′), plus repetitions} is a set of samples of xk+1,λ [15].

3The B.F. applies to this framework.
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Definition 2.2 In Step (1), call each set of Jk,i paths, for each i, a branch of prediction.

By induction on k, upon relabeling the sets {x(i′,j ′)} and {J(i′,j ′)} as {xk+1,i} and {Jk+1,i},
i = 1, . . . , Ik+1, one establishes a recursive algorithm for sampling

�(x0; tk) | (yt1,λ = y1, . . . , ytk,λ = yk), k = 1, . . . ,N.

Remark 2.1 Proofs and alternatives to the branching Step (2) are presented in [4].

3 The Diffusion Kernel Filter

Consider the nonlinear Itô SODE with multiplicative4 noise

d

dt
x = f (x) + g(x)ζ, t ∈ [tk, tk+1], (3.1)

where ζ := dw/dt , and let �(xk; t), xk ∈ R
n, be its dynamics.

3.1 A Linear SPDE Problem for �(xk; t)

Let

X(xk; t) := ∂

∂t
�(xk; t) − ((f (xk) + g(xk)ζ ) · D)�(xk; t),

= ∂

∂t
�(xk; t) − D�(xk; t)(f (xk) + g(xk)ζ ). (3.2)

From the definition of �(xk; t) and (3.2), upon using dg(t,w)ζ/dt = 0 one obtains the
linear RPDE (random partial differential equation) problem

∂

∂t
X(xk; t) = Df (x)

∣
∣
x=�(xk ;t)X(xk; t),

X(xk; tk) = 0.

Thus X(xk; t) = 0 for all t ∈ [tk, tk+1] and xk ∈ R
n, that is,

∂

∂t
�(xk; t) = L(xk)�(xk; t),

where

L(xk) := ((f (xk) + g(xk)ζ ) · D). (3.3)

Therefore, the dynamics of (3.1) solves the Liouville SPDE problem

∂

∂t
�(xk; t) = L(xk)�(xk; t), (3.4)

4Though only meant for additive noise, the D.K.F. is derived under this framework with the use of semi-
groups.
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�(xk; tk) = xk, (3.5)

which may be written

∂

∂t
�(xk; t) = e(t−tk )LLxk, (3.6)

�(xk; tk) = xk, (3.7)

where e(t−tk )L is the semigroup associated to (3.4).
More generally, writing

∂

∂t
u(�(xk; t)) = Du(x)

∣
∣
x=�(xk ;t)

∂

∂t
�(xk; t),

one obtains the following.
�(xk; t) is the dynamics of (3.1) if, and only if, u(�(xk; t)) solves the Liouville SPDE

problem

∂

∂t
u(�(xk; t)) = L(xk)u(�(xk; t)), (3.8)

u(�(xk; tk)) = u(xk), (3.9)

for any u = u(x) : R
n −→ R

n sufficiently smooth.
In particular, for g = 0, one obtains that φ(xk; t), xk ∈ R

n, is the dynamics of the nonlin-
ear ODE

d

dt
x = f (x), t ∈ [tk, tk+1], (3.10)

if, and only if, u(φ(xk; t)) solves the Liouville PDE (partial differential equation) problem

∂

∂t
u(φ(xk; t)) = (f (xk) · D)u(φ(xk; t)), (3.11)

u(φ(xk; tk)) = u(xk), (3.12)

for any u = u(x) : R
n −→ R

n sufficiently smooth.
For details, see [2], Chap. 6.

3.2 A Nonlinear SODE Open Problem for �(xk,i; t)

The use of Duhamel’s formula coming next differs considerably from [2, 3].

Definition 3.1 Let P be the conditional expectation E[·|xk] and Q := I − P its complement,
with xk (marginally) distributed according to the Dirac measure centered at some sample
xk,i of xk,λ.

Take A = PL and B = QL in Duhamel’s formula

e(t−tk )(A+B) = e(t−tk )A +
∫ t

tk

e(t−s)(A+B)Be(s−tk )Ads
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and apply both sides onto PLxk . One gets

e(t−tk )LPLxk = e(t−tk )PLPLxk +
∫ t

tk

e(t−s)LQLe(s−tk )PLPLxkds. (3.13)

Remark 3.1 Formula (3.13) is known for g = 0 ([9], Chap. 9). Proving its extension to g �= 0
is a good subject for research.

In (3.6), write

e(t−tk )LLxk = e(t−tk )LPLxk + e(t−tk )LQLxk. (3.14)

Then, upon applying formula (3.13) and Definition 3.1, problem (3.6)–(3.7) reformulates
into

d

dt
�(xk,i; t) = e(t−tk )PLPLxk +

∫ t

tk

e(t−s)LQLe(s−tk )PLPLxkds + e(t−tk )LQLxk, (3.15)

�(xk,i; tk) = xk,i . (3.16)

To find how e(t−tk )PL acts on PLxk = f (xk,i), apply P onto each member of (3.8)–(3.9). One
obtains

∂

∂t
Pu(�(xk; t)) = (f (xk,i ) · D)Pu(�(xk; t)) = PL(xk)Pu(�(xk; t)), (3.17)

Pu(�(xk; tk)) = u(xk,i). (3.18)

Taking u ≡ f , one concludes that

e(t−tk )PLPLxk = Pf (�(xk; t)),

if f is sufficiently smooth.
Thus, the nonlinear SODE open problem (3.15)–(3.16) reads

d

dt
�(xk,i; t) = Pf (�(xk; t)) +

∫ t

tk

e(t−s)LQLPf (�(xk; s))ds + e(t−tk )LQLxk,

�(xk,i; tk) = xk,i ,

which, upon substituting L, applying Q, then applying e(t−tk )L, further reads

d

dt
�(xk,i; t) = Pf (�(xk; t)) +

∫ t

tk

e(t−s)L(g(xk,i )ζ · D)Pf (�(xk; s))ds

+ g(�(xk,i; t))ζ, (3.19)

�(xk,i; tk) = xk,i . (3.20)

3.3 A Closure for Problem (3.19)–(3.20)

For small fluctuations of �(xk,i; ·) over [tk, t] the following applies.
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Assumption 3.1

Pf (�(xk; ·)) = f (P�(xk; ·)). (3.21)

Assumption 3.1 implies P�(xk; t) = φ(xk,i; t) (apply P to the original equation for
�(xk; t)). Thus, for small fluctuations of �(xk,i; ·) over [tk, t] problem (3.19)–(3.20) may
be written

d

dt
�(xk,i; t) = f (φ(xk,i; t)) +

∫ t

tk

e(t−s)L(g(xk,i )ζ · D)f (φ(xk,i; s))ds + g(�(xk,i; t))ζ,

(3.22)

�(xk,i; tk) = xk,i . (3.23)

Definition 3.2 Let L2
τ (n,p) be the vector space of M(R, n,p)-valued stochastic processes

A(s) = (Aij (s)) over the time interval τ := [tk, t] such that, for every i, j , E(|Aij (s)|2) <

+∞ for all s ∈ τ , and
∫ t

tk
E(|Aij (s)|2)ds < +∞.

Definition 3.3 Call

G(xk,i; t, s) := Dφ(xk,i; t)g(�(xk,i; s)), t ∈ [tk, tk+1], s ∈ [tk, t], (3.24)

the diffusion kernel in a branch of prediction of (3.1). This is a M(R, n,p)-valued stochastic
process in s.

For G(xk,i; t, ·) ∈ L2
τ (n,p), one has

C(xk,i; t) =
∫ t

tk

E(G(xk,i; t, s)G∗(xk,i; t, s))ds, (3.25)

where

C(xk,i; t) := Cov

(∫ t

tk

G(xk,i; t, s)dw(s − tk)

)

(3.26)

and G∗ refers to the conjugate transpose of G. This follows from the following properties5 of
an Itô stochastic integral with respect to a standard vector-Wiener process with independent
components (cf. [13] or [11], Chap. 3):

E

(∫ t

tk

Gı,l(t, s)dwl(s − tk)

)

= 0, ı = 1, . . . , n, l = 1, . . . , p,

E

(∫ t

tk

Gı,l1(t, s)dwl1(s − tk)

∫ t

tk

Gj,l2(t, s)dwl2(s − tk)

)

= 0,

ı, j = 1, . . . , n, l1, l2 = 1, . . . , p, l1 �= l2,

E

(∫ t

tk

Gı,l(t, s)dwl(s − tk)

∫ t

tk

Gj,l(t, s)dwl(s − tk)

)

=
∫ t

tk

E(Gı,l(t, s)Gj,l(t, s))ds, ı, j = 1, . . . , n, l = 1, . . . , p,

where G(t, s) stands for G(xk,i; t, s).

5The third one is known as Itô isometry formula.
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Definition 3.4 Let L2
τ (1,p) be embodied with the inner product (u, v) := ∫ t

tk
E(u(s)v∗(s))ds

and the norm ‖u‖2 := √
(u,u) associated to it. This is a Hilbert space (cf. [11], Chap. 3,

Lemma 3.2.1).

Under this notation, (3.25) reads

Cı,j (xk,i; t) = (Gı(xk,i; t, ·),Gj (xk,i; t, ·)), ı, j = 1, . . . , n, (3.27)

where Gλ refers to a row of G, which implies

|Cı,j (xk,i; t)| ≤ ‖Gı(xk,i; t, ·)‖2‖Gj(xk,i; t, ·)‖2, ı, j = 1, . . . , n, (3.28)

under the Cauchy-Schwarz inequality, so that

‖C(xk,i; t)‖∞ ≤ ( max
ı=1,...,n

‖Gı(xk,i; t, ·)‖2)
2. (3.29)

Definition 3.5 Let L2
τ (n,p) be embodied with the norm ‖A‖ := maxi=1,...,n ‖Ai‖2, where

Aλ refers to a row of A.

Under this notation, inequality (3.29) reads

‖C(xk,i; t)‖∞ ≤ ‖G(xk,i; t, ·)‖2. (3.30)

Therefore, Cov(
∫ t

tk
G(xk,i; t, s)dw(s − tk)) is small whenever G(xk,i; t, ·) is small in

(L2
τ (n,p),‖ · ‖).
For small fluctuations of �(xk,i; ·) over [tk, t] the following applies.

Assumption 3.2

e(t−s)Lf (φ(xk,i; s)) � f (φ(xk,i; t)). (3.31)

Upon applying (3.31), writing

(g(�(xk,i; tk + t − s))ζ · D)f (φ(xk,i; t)) = Df (φ(xk,i; t))g(�(xk,i; tk + t − s))ζ

= Df (x)|x=φ(xk,i ;t)G(xk,i; t, tk + t − s)ζ,

then writing

∫ t

tk

G(xk,i; t, tk + t − s)ζds =
∫ t

tk

G(xk,i; t, s)ζds

=
∫ t

tk

G(xk,i; t, s)dw(s − tk),

problem (3.22)–(3.23) closes into

d

dt
�(xk,i; t) = f (φ(xk,i; t)) + Df (x)

∣
∣
x=φ(xk,i ;t)

(∫ t

tk

G(xk,i; t, s)dw(s − tk)

)

+ g(�(xk,i; t))ζ, �(xk,i; tk) = xk,i , (3.32)
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d

dt
φ(xk,i; t) = f (φ(xk,i; t)), φ(xk,i; tk) = xk,i , (3.33)

d

dt
Dφ(xk,i; t) = Df (x)

∣
∣
x=φ(xk,i ;t)Dφ(xk,i; t), Dφ(xk,i; tk) = I(n,n), (3.34)

where Dφ(xk,i; t) is the deterministic propagator of initial perturbations about xk,i .

3.4 The Diffusion Kernel Filter

Problem 3.32 is interpreted as stemming from linearization of the drift function about the de-
terministic path of a branch of prediction and the parametrization of small state fluctuations
about this path into

∫ t

tk
G(xk,i; t, s)dw(s − tk), which may be written

Dφ(xk,i; t)
∫ t

tk

g(�(xk,i; s))dw(s − tk). (3.35)

See Fig. 1.
Formula (3.35) reads as the accumulated system noise mapped through the deterministic

propagator of initial perturbations about xk,i . It establishes a duality between the analy-
sis of sensitivity to gaussian-initial perturbations and the analysis of sensitivity to noise-
perturbations, in deterministic models. See Fig. 2.

Since taking

�(xk,i; t) := φ(xk,i; t) + Dφ(xk,i; t)
∫ t

tk

g(�(xk,i; s))dw(s − tk) (3.36)

implies

∂

∂t
�(xk,i; t) = f (φ(xk,i; t)) + Df (x)

∣
∣
x=φ(xk,i ;t)

(∫ t

tk

G(xk,i; t, s)dw(s − tk)

)

+ G(xk,i; t, t)ζ, (3.37)

Fig. 1 (Color online)
Parametrizing small state
fluctuations within branches of
prediction with formula (3.35).
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Fig. 2 (Color online) Dynamical
sensitivity of the Lorenz-63
equations. Dash-dot =
rms distance from �(x0,i ; t) to
φ(x0,i ; t) (sensitivity to noise
perturbations in the equations);
dashed = rms distance from
weakly sampled
Dφ(x0,i ; t)

∫ t
0 g dw(s) to zero

(sensitivity to corresponding
Gaussian-initial perturbations);
solid = rms distance from
φ(x0; t) to φ(x0,i ; t), where x0
is weakly sampled from
x0,i + ∫ t

0 g dw(s) for every t ≥ 0
(sensitivity to corresponding
Gaussian-initial perturbations).
Plot 1: g = (0.1,0.1,0); Plot 2:
g = g0w(t − t0) with
g0 = (0.03,0.03,0)

which approximates problem (3.32), the following may be proposed when

∫ t

tk

g(s,w(s − tk))dw(s − tk)

is analytically integrable as a function of w and t , say into

g0ϕ(w(t − tk), t, tk) (3.38)

with g0 ∈ M(R, n,p).

Algorithm 3.1 (Diffusion Kernel Filter) Apply the Bootstrap Filter with the following
change to Step (1): For each i = 1, . . . , Ik , solve problem (3.33)–(3.34) for the paths of
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φ(xk,i; t) and Dφ(xk,i; t), up to time t = tk+1; then draw Jk,i weak6 samples from

�′(xk,i; tk+1) := Dφ(xk,i; tk+1)

∫ tk+1

tk

g(s,w(s − tk))dw(s − tk) (3.39)

and add them to φ(xk,i; tk+1), to obtain x(i,j), i = 1, . . . , Ik , j = 1, . . . , Jk,i .

When the inequality 3.30 is sharp, the diffusion kernel L2
τ (n,p)-norm is expected to be

a good measure of the information entropy of a branch of prediction when the latter is close
to Gaussian. As such, along with the Diffusion Kernel Filter, the following definition of
prediction is proposed.

Definition 3.6 Call average-entropy prediction the deterministic path within the branch of
prediction whose diffusion kernel L2

τ (n,p)-norm at the end of the prediction time interval
is closest to the average norm over all branches, weighed according to their likelihood.

3.4.1 Comments

When g is constant, the parametrization �′(xk,i; t) = G(xk,i; t)w(t − tk) stemming from
3.35 for G(xk,i; t) := Dφ(xk,i; t)g implies

C = (t − tk)GG∗, (3.40)

where C(xk,i; t) := Cov(�′(xk,i; t)). Therefore dC/dt = MC + CM∗ + GG∗, where M :=
Df (x)|x=φ(xk,i ;t). Hence dC/dt ≈ MC + CM∗ + gg∗, for short times, which is consistent
with the exact equation for C associated to dx = Mxdt + gdw (cf. [11], Sect. 4.8).

3.4.2 Operations Count

With an explicit numerical integrator for problem (2.4)–(2.5), the operations count per time
step in the Bootstrap Filter (BF) is dominantly O(Inp), which is the cost of computing the
noise term gdw. With an explicit numerical integrator for problem (3.33)–(3.34), the opera-
tions count per time step in the Diffusion Kernel Filter (DKF) is dominantly O(Ikn

2p) when
(3.38) applies, which is the cost of propagating Dφg0 through the equation for initial per-
turbations. The DKF-to-BF count ratio in a prediction time interval is then O(
n(Ik/I )),
where Ik ≤ I and 
 is the ratio between the number of time steps required by the corre-
sponding integrators to cover that interval. This count ratio is smaller than one whenever
n < O((1/
)(I/Ik)), where Ik increases with the number of moments present in the fil-
tered state, reaching I when the filtered state is uniformly distributed over some region of
the state space. Therefore, for any moderate dimensional problem and upon clustering the
filtered state samples prior to defining the next generation of branches of prediction at filter-
ing times, the operations count in the Diffusion Kernel Filter is expected to be smaller than
in the Bootstrap Filter whenever the filtered states have few moments.

6The parametrization (3.39) is interpreted in distribution.
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4 Tests with Lorenz

The Diffusion Kernel Filter and the average-entropy prediction are to be tested with ref-
erence to the Bootstrap Filter and the average estimate7. Since there is commonly no sep-
aration of time scales between variables in a nonlinear dynamics, tests are made with the
Lorenz-63 equations perturbed by additive noise. These are the equations

d

dt
x1 = σ(x2 − x1) +

p∑

l=1

g1,l (t,w)dwl, (4.1)

d

dt
x2 = (ρx1 − x2 − x1x3) +

p∑

l=1

g2,l (t,w)dwl, (4.2)

d

dt
x3 = (x1x2 − βx3) +

p∑

l=1

g3,l (t,w)dwl, (4.3)

taken with σ = 10.0, ρ = 28.0, β = 8/3 (chaotic regime). In these tests, the observation
function is set to identity and the initial state estimate to x0 = (−15,−14,37) almost-surely.
The initial real state itself is set to ξ0 = (−10,−7,21), a rare event of x0. The noise process
zt that adds to the observation function is set strictly stationary with independent N(0,1)

components. The equations are solved through the explicit weak order 2.0 Heun method
[7], with time step dt = 10−4. In order to continuously plot the evolution of moments in
the Diffusion Kernel Filter, the samples of (3.39) are also drawn in (every time step of) the
prediction steps. The filtering times are determined kernel-adaptively by placing a bound
on the maximum value of the diffusion kernel L2

τ (n,p)-norm8 over all branches of predic-
tion, computed in every time step, which adapts the size of the prediction steps to the local
stability of the dynamical flow.

The maximum-likelihood prediction is defined to be the deterministic path emanating
from the most likely sample. The results obtained for the case of a 3 × 1 constant diffusion
matrix g are presented in Fig. 3. In this setting, one has

∫ t

tk

G(xk,i; t, s)dw(s − tk) = (Dφ(xk,i; t)g)w(t − tk), (4.4)

‖G(xk,i; t, ·)‖ = max
ı=1,...,n

√
t − tk|(Dφ(xk,i; t)g)ı |. (4.5)

With the above parameters in this setting, about 100 K samples were needed for the Boot-
strap Filter weak statistics to reach convergence up to third moments over the time interval
[0,100]. Plot 3(1-2) shows that the maximum-likelihood predictor is a bad choice when the
probability density of the filtered state is multimodal or uniform, the latter case being com-
mon with chaotic systems. The results obtained for the case of a 3 × 1 random diffusion
matrix g = g0w(t − tk) with g0 ∈ M(R,3,1) are presented in Fig. 4. In this setting, one has

∫ t

tk

G(xk,i; t, s)dw(s − tk) = (Dφ(xk,i; t)g0)
1

2
(w2(t − tk) − (t − tk)), (4.6)

7For short times, the aim is to stay close to the average estimate.
8A norm on the covariance matrix, when explicit (e.g. as in (3.40)), would be more appropriate.
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Fig. 3 (Color online) Performance of the Diffusion Kernel Filter and the average-entropy predic-
tion: tests with the Lorenz-63 equations perturbed by additive noise with the constant diffusion matrix
g = (0.4,0.5,0.3). BF = 100 K samples Bootstrap Filter; DKF = 100 K samples Diffusion Kernel Filter;
AV = average estimate; AE = average-entropy prediction; ML = maximum-likelihood prediction. Plot 1(1):
first moment (solid = BF; solid = DKF; cross = real path); Plot 1(2): second central moment (solid = BF;
solid = DKF); Plot 2(1): third central moment (solid = BF; solid = DKF; dotted = 10 K samples Bootstrap
Filter); Plot 2(2): maximum diffusion kernel over all branches of prediction (DKF); Plot 3(1-2): prediction
error along the filtering process (solid = AV; dashed = AE; dotted = ML; the diamonds mark the filtering
times)
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Fig. 4 (Color online) Performance of the Diffusion Kernel Filter and the average-entropy prediction: tests
with the Lorenz-63 equations perturbed by additive noise with the random diffusion matrix g = g0w(t − tk)

with g0 = (0.01,0,0.01). BF = 500 K samples Bootstrap Filter; DKF = 500 K samples Diffusion Kernel
Filter; AV = average estimate; AE = average-entropy prediction; ML = maximum-likelihood prediction.
Plot 1(1): first moment (solid = BF; solid = DKF; cross = real path); Plot 1(2): second central moment
(solid = BF; solid = DKF); Plot 2(1): third central moment (solid = BF; solid = DKF; dotted = 100 K
samples Bootstrap Filter); Plot 2(2): maximum diffusion kernel over all branches of prediction (DKF); Plot
3(1-2): prediction error along the filtering process (solid = AV; dashed = AE; dotted = ML; the diamonds
mark the filtering times)
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‖G(xk,i; t, ·)‖ = max
ı=1,...,n

√
2

2
(t − tk)|(Dφ(xk,i; t)g0)ı |. (4.7)

The latter expression arises from

‖Gı‖2 =
√∫ t

tk

E(w2(s − tk))ds|(Dφ(xk,i; t)g0)ı | =
√

2

2
(t − tk)|(Dφ(xk,i; t)g0)ı |.

With the above parameters in this setting, about 500 K samples were needed for the Boot-
strap Filter weak statistics to reach convergence up to third moments over the time interval
[0,20]. With bound 5 · 10−4 on the maximum diffusion kernel L2

τ (n,p)-norm, agreement
between the Bootstrap Filter and the Diffusion Kernel Filter on these moments was found
up to time 10. Plot 3(1-2) shows that the predictors and the average estimate coincide in this
case. For this to happen, the probability densities of the filtered states must be dominantly
unimodal with little skewness.

The results are good in both cases, both for the filter and the definition of prediction.
As such the method is shown to be able to weakly sample the filtered states of a chaotic
dynamics in a long filtering process with short prediction steps.

5 Conclusion

A particle filter method was presented for the discrete-time filtering problem with nonlin-
ear Itô stochastic ordinary differential equations (SODE) with additive noise supposed to
be analytically integrable as a function of the underlying vector-Wiener process and time.
The Diffusion Kernel Filter was arrived at by a parametrization of small noise-driven state
fluctuations within branches of prediction and a local use of it in the Bootstrap Filter. The
referred parametrization was derived by a reformulation of the Itô problem into a Liou-
ville stochastic partial differential equation problem, use of Duhamel’s principle in weak
form, splitting of a term with the projection P := E[·|xk] and its complement, restriction of
the resulting problem to an open nonlinear stochastic ordinary differential equation prob-
lem for the flow of a branch of prediction, closure of the latter problem. This was inspired
from [2, 3], where a similar technique is used to tackle the dimension reduction problem
for the dynamics of a nonlinear ordinary differential equation. For constant diffusion ma-
trices and short times, the established parametrization was shown to be consistent with the
Kalman-Bucy Filter prediction of the evolution of the covariance matrix within branches of
prediction. It reads as the stochastic integral of a diffusion kernel or the accumulated system
noise mapped through the deterministic propagator of initial perturbations. The latter estab-
lishes a dual-formula for the analysis of sensitivity to gaussian-initial perturbations and the
analysis of sensitivity to noise-perturbations, in deterministic models, showing in particular
how the stability of a deterministic dynamics is modeled by noise on short times and how
the diffusion matrix of an SODE should be modeled (i.e. defined) for a gaussian-initial de-
terministic problem to be cast into an SODE problem. With explicit numerical integrators,
the Diffusion Kernel Filter was shown to have a smaller count of operations than the Boot-
strap Filter whenever the initial state for the prediction step has sufficiently few moments.
A norm that estimates the magnitude of the covariance matrix within branches of prediction
was provided to the diffusion kernel. From it, a novel definition of prediction was proposed
that coincides for constant diffusion matrices with the deterministic path within the branch
of prediction whose information entropy at the end of the prediction time interval is closest



380 P. Krause

to the average information entropy over all branches (weighed according to their likelihood).
Under this definition, the predictions are expected to stay close to the average estimates for
short times. Tests were made with the Lorenz-63 equations, showing good results both for
the filter and the definition of prediction. As such, by redefining the branches of prediction at
every filtering time, the method was shown to be able to weakly sample the filtered states of
a chaotic dynamics in a long filtering process with short prediction steps. If applied with the
projection P := E[·|x̂k], where x̂k stands for a given set of components of xk , the developed
technique produces a marginal fluctuation formula expressed in terms of a reduced diffusion
kernel with an effective diffusion matrix, as it will be shown in a succeeding paper.
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